Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Signal Transduct Target Ther ; 8(1): 42, 2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2230292

ABSTRACT

The Omicron variants of SARS-CoV-2, primarily authenticated in November 2021 in South Africa, has initiated the 5th wave of global pandemics. Here, we systemically examined immunological and metabolic characteristics of Omicron variants infection. We found Omicron resisted to neutralizing antibody targeting receptor binding domain (RBD) of wildtype SARS-CoV-2. Omicron could hardly be neutralized by sera of Corona Virus Disease 2019 (COVID-19) convalescents infected with the Delta variant. Through mass spectrometry on MHC-bound peptidomes, we found that the spike protein of the Omicron variants could generate additional CD8 + T cell epitopes, compared with Delta. These epitopes could induce robust CD8 + T cell responses. Moreover, we found booster vaccination increased the cross-memory CD8 + T cell responses against Omicron. Metabolic regulome analysis of Omicron-specific T cell showed a metabolic profile that promoted the response of memory T cells. Consistently, a greater fraction of memory CD8 + T cells existed in Omicron stimulated peripheral blood mononuclear cells (PBMCs). In addition, CD147 was also a receptor for the Omicron variants, and CD147 antibody inhibited infection of Omicron. CD147-mediated Omicron infection in a human CD147 transgenic mouse model induced exudative alveolar pneumonia. Taken together, our data suggested that vaccination booster and receptor blocking antibody are two effective strategies against Omicron.


Subject(s)
COVID-19 , Humans , Animals , Mice , COVID-19/genetics , Leukocytes, Mononuclear , SARS-CoV-2 , Antibodies, Neutralizing , Epitopes , Mice, Transgenic
2.
Signal Transduct Target Ther ; 8(1): 46, 2023 01 30.
Article in English | MEDLINE | ID: covidwho-2221795

ABSTRACT

Meplazumab, a humanized CD147 antibody, has shown favourable safety and efficacy in our previous clinical studies. In DEFLECT (NCT04586153), 167 patients with severe COVID-19 were enroled and randomized to receive three dosages of meplazumab and a placebo. Meplazumab at 0.12 mg/kg, compared to the placebo group, showed clinical benefits in significantly reducing mortality by 83.6% (2.4% vs. 14.6%, p = 0.0150), increasing the proportion of patients alive and discharged without supplemental oxygen (82.9% vs. 70.7%, p = 0.0337) and increasing the proportion of patients who achieved sustained clinical improvement (41.5% vs. 31.7%). The response rate in the 0.2 mg/kg group was relatively increased by 16.0% compared with the placebo group (53.7% vs. 46.3%). Meplazumab also reduced the viral loads and multiple cytokine levels. Compare with the placebo group, the 0.3 mg/kg significantly increased the virus negative rate by 40.6% (p = 0.0363) and reduced IL-8 level (p = 0.0460); the 0.2 mg/kg increased the negative conversion rate by 36.9%, and reduced IL-4 (p = 0.0365) and IL-8 levels (p = 0.0484). In this study, the adverse events occurred at a comparable rate across the four groups, with no unexpected safety findings observed. In conclusion, meplazumab promoted COVID-19 convalescence and reduced mortality, viral load, and cytokine levels in severe COVID-19 population with good safety profile.


Subject(s)
COVID-19 , Humans , Adult , SARS-CoV-2 , Interleukin-8 , Cytokines
3.
Signal Transduct Target Ther ; 7(1): 382, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2133303

ABSTRACT

COVID-19 patients can develop clinical and histopathological features associated with fibrosis, but the pathogenesis of fibrosis remains poorly understood. CD147 has been identified as a universal receptor for SARS-CoV-2 and its variants, which could initiate COVID-19-related cytokine storm. Here, we systemically analyzed lung pathogenesis in SARS-CoV-2- and its delta variant-infected humanized CD147 transgenic mice. Histopathology and Transmission Electron Microscopy revealed inflammation, fibroblast expansion and pronounced fibrotic remodeling in SARS-CoV-2-infected lungs. Consistently, RNA-sequencing identified a set of fibrosis signature genes. Furthermore, we identified CD147 as a crucial regulator for fibroblast activation induced by SARS-CoV-2. We found conditional knockout of CD147 in fibroblast suppressed activation of fibroblasts, decreasing susceptibility to bleomycin-induced pulmonary fibrosis. Meplazumab, a CD147 antibody, was able to inhibit the accumulation of activated fibroblasts and the production of ECM proteins, thus alleviating the progression of pulmonary fibrosis caused by SARS-CoV-2. In conclusion, we demonstrated that CD147 contributed to SARS-CoV-2-triggered progressive pulmonary fibrosis and identified CD147 as a potential therapeutic target for treating patients with post-COVID-19 pulmonary fibrosis.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/genetics , SARS-CoV-2 , COVID-19/genetics
4.
Emerg Microbes Infect ; 11(1): 1135-1144, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1764464

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants is threatening public health around the world. Endocytosis functions as an important way for viral infection, and SARS-CoV-2 bears no exception. However, the specific endocytic mechanism of SARS-CoV-2 remains unknown. In this study, we used endocytic inhibitors to evaluate the role of different endocytic routes in SARS-CoV-2 pseudovirus infection and found that the viral infection was associated with caveolar/lipid raft- and cytoskeleton-mediated endocytosis, but independent of the clathrin-mediated endocytosis and macropinocytosis. Meanwhile, the knockdown of CD147 and Rab5a in Vero E6 and Huh-7 cells inhibited SARS-CoV-2 pseudovirus infection, and the co-localization of spike protein, CD147, and Rab5a was observed in pseudovirus-infected Vero E6 cells, which was weakened by CD147 silencing, illustrating that SARS-CoV-2 pseudovirus entered the host cells via CD147-mediated endocytosis. Additionally, Arf6 silencing markedly inhibited pseudovirus infection in Vero E6 and Huh-7 cells, while little change was observed in CD147 knockout-Vero E6 cells. This finding indicated Arf6-mediated CD147 trafficking plays a vital role in SARS-CoV-2 entry. Taken together, our findings provide new insights into the CD147-Arf6 axis in mediating SARS-CoV-2 pseudovirus entry into the host cells, and further suggest that blockade of this pathway seems to be a feasible approach to prevent the SARS-CoV-2 infection clinically.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
5.
Signal Transduct Target Ther ; 6(1): 347, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1437669

ABSTRACT

SARS-CoV-2 mutations contribute to increased viral transmissibility and immune escape, compromising the effectiveness of existing vaccines and neutralizing antibodies. An in-depth investigation on COVID-19 pathogenesis is urgently needed to develop a strategy against SARS-CoV-2 variants. Here, we identified CD147 as a universal receptor for SARS-CoV-2 and its variants. Meanwhile, Meplazeumab, a humanized anti-CD147 antibody, could block cellular entry of SARS-CoV-2 and its variants-alpha, beta, gamma, and delta, with inhibition rates of 68.7, 75.7, 52.1, 52.1, and 62.3% at 60 µg/ml, respectively. Furthermore, humanized CD147 transgenic mice were susceptible to SARS-CoV-2 and its two variants, alpha and beta. When infected, these mice developed exudative alveolar pneumonia, featured by immune responses involving alveoli-infiltrated macrophages, neutrophils, and lymphocytes and activation of IL-17 signaling pathway. Mechanistically, we proposed that severe COVID-19-related cytokine storm is induced by a "spike protein-CD147-CyPA signaling axis": Infection of SARS-CoV-2 through CD147 initiated the JAK-STAT pathway, which further induced expression of cyclophilin A (CyPA); CyPA reciprocally bound to CD147 and triggered MAPK pathway. Consequently, the MAPK pathway regulated the expression of cytokines and chemokines, which promoted the development of cytokine storm. Importantly, Meplazumab could effectively inhibit viral entry and inflammation caused by SARS-CoV-2 and its variants. Therefore, our findings provided a new perspective for severe COVID-19-related pathogenesis. Furthermore, the validated universal receptor for SARS-CoV-2 and its variants can be targeted for COVID-19 treatment.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Basigin/antagonists & inhibitors , Basigin/metabolism , COVID-19 Drug Treatment , COVID-19/metabolism , Cytokine Release Syndrome/drug therapy , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Basigin/genetics , COVID-19/genetics , Chlorocebus aethiops , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/metabolism , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Vero Cells
6.
Rev Cardiovasc Med ; 22(1): 247-256, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1168426

ABSTRACT

ST-segment elevation myocardial infarction (STEMI) is a common cardiovascular emergency for which timely reperfusion therapies are needed to minimize myocardial necrosis. The aim of this study was to investigate the impact of the COVID-19 pandemic and reorganization of chest pain centers (CPC) on the practice of primary percutaneous coronary intervention (PPCI) and prognosis of STEMI patients. This single-center retrospective survey included all patients with STEMI admitted to our CPC from January 22, 2020 to April 30, 2020 (during COVID-19 pandemic in Wuhan), compared with those admitted during the analogous period in 2019, in respect of important time points of PPCI and clinical outcomes of STEMI patients. In the present article, we observed a descending trend in STEMI hospitalization and a longer time from symptom onset to first medical contact during the COVID-19 pandemic as compared to the control period (4.35 h versus 2.58 h). With a median delay of 17 minutes in the door to balloon time (D2B), the proportion of in-hospital cardiogenic shock was significantly higher in the COVID-19 era group (47.6% versus 19.5%), and major adverse cardiac events (MACE) tend to increase in the 6-month follow-up period (14.3% versus 2.4%). Although the reorganization of CPC may prolong the D2B time, immediate revascularization of the infarct-related artery could be offered to most patients within 90 minutes upon arrival. PPCI remained the preferred treatment for patients with STEMI during COVID-19 pandemic in the context of timely implementation and appropriate protective measures.


Subject(s)
COVID-19 , Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , China/epidemiology , Delivery of Health Care , Humans , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/therapy , Pandemics , Percutaneous Coronary Intervention/adverse effects , Prognosis , Retrospective Studies , SARS-CoV-2 , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/epidemiology
7.
Signal Transduct Target Ther ; 5(1): 283, 2020 12 04.
Article in English | MEDLINE | ID: covidwho-957563

ABSTRACT

In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.


Subject(s)
Basigin/genetics , COVID-19/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Basigin/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Host-Pathogen Interactions/immunology , Humans , Lung/immunology , Lung/pathology , Lung/virology , Mice , Pandemics , Protein Binding/immunology , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL